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Abstract—As crowdsensing applications become more preva-
lent, they are becoming a more frequent target of attacks. Attacks
on incentive systems are difficult to prevent because the attacker
is not necessarily submitting malicious data, in fact, the data is
typically completely valid, so previous work in data trust and
integrity will not prevent these attacks.

We have taken a context-aware approach to preventing at-
tackers from submitting useless information to exploit incentive
systems. Our system requires participants to submit a context
package along with the data they are collecting. This context
package acts as a proof that they were where they said they
were when they said they were and is evaluated using a machine
learning model. The system is able to achieve an F1 score of 0.93
against an attacker that submits arbitrary context information.
We have demonstrated the feasibility of this approach in such a
way that it raises the cost to attackers to submit arbitrary data
to a crowdsensing system to exploit its incentive mechanisms.

Index Terms—Context-Aware Security, Crowdsensing, Incen-
tives

I. INTRODUCTION

Crowdsensing is an emerging method for data collection
that lowers the barrier of entry from traditional infrastructure-
driven approaches. Whereas traditional sensing requires that
the investigator or company to deploy and maintain devices
in the environment, crowdsensing utilizes sensors that people
carry with them, typically in the form of a mobile phone,
to acquire experimental data. Researchers have already used
crowdsensing for a variety of applications and scientific studies
including tracking the spread of invasive species[1], assessing
noise pollution[2], monitoring traffic conditions[3]. In all of
these cases, there is a spatio-temporal component to the data
that is critical for it to be useful. If a user lies about the time
or location of the sensed information, that information loses
its value to the crowdsensing system.

Since users that collect information for crowdsensing appli-
cations are volunteering their time and resources, it is neces-
sary to incentivize the users to participate. There are a several
ways that this is done. Most taxonomies describe incentives
in some form similar to incentives based on the value of the
application, incentives by gamification of the sensing task, and
incentivization by payments[4], [5], [6]. In crowdsensing, the
security concern that we address is methods by which we
can prevent attackers from being rewarded for contributing
information that does not help the system. The focus of this
work differs from work that focuses on detecting bad data,

because the contributed data could be indistinguishable from
good data, but not add any additional value to the system.

GPS spoofing has frequently been discussed in terms of
attacks on UAVs, Smart Grid, and military applications[7],
[8], [9], but recently there has been an uptick in attacks that
focus on economic incentives related to location. A recent
news article [10] describes a case in 2018 where a user
of AEON Kyushu app in Japan set up machines to check
in to locations non-stop in exchange for micro-incentives.
The user accrued nearly 2.7 million check-ins which totaled
approximately 5,380,000 Yen ($53,500 USD) worth of AEON
store credit. Similarly, GPS spoofing has been used ride share
systems to gain economic advantages. [11] reports that Uber
drivers in Lagos have been spoofing GPS locations to trick the
Uber platform into calculating an inflated fare for the rider. An
alternative strategy is presented in [12] where a driver uses two
phones. Airports tend to yield high-profit rides for ride-sharing
drivers; however, because of this there is often a long queue of
drivers waiting for passengers. On one phone, they spoof the
location of the local airport, so that they can enter the queue,
then they use another phone to perform normal rides only to
the airport just in time to be at the head of the queue.

We present the development of a spatio-temporal model that
uses a context proof from a user to determine how likely they
are to be in the location they claim at the time they claim.
The context-proof system is designed so that it can integrate
into existing crowdsensing frameworks such as the AWARE
Framework[13]. The primary contribution of this work is to
raise the cost to an attacker, so that these currently used attacks
are no longer viable. Additionally, we describe two more
sophisticated, but also more expensive, attacks that adversaries
might move to in the future and demonstrate their effectiveness
to motivate future work in this area.

II. BACKGROUND

A. Security in Crowdsensing

Secure crowdsensing consists of 3 main research challenges
that extend beyond traditional security research. The first of
those is ensuring that the data that is received from the users
is trustworthy. The second is to ensure that the privacy of both
the participants and adjacent non-participants is preserved. The
third, which is the focus of this work, is to ensure that users do
not exploit crowdsensing incentive systems to receive rewards



without contributing useful information. Incentives are used in
crowdsensing experiments and applications to motivate users
to continue participating. They can take many forms such as
financial, service, or entertainment. Incentive security differs
from data security in that an attacker could replay real data
that is completely valid. This data would not damage any of
the analysis that is done on the dataset, but it would come at
an unnecessary cost to the system organizer.

B. Device Analyzer Dataset

The Device Analyzer project [14] by the University of
Cambridge collects data from the mobile phones of volunteers.
The project collects data about approximately 300 different
events including information about alarms, applications, audio
settings, various types of network connectivity, contacts, loca-
tion, telephony status, power, sensors, system settings, storage,
and much more, making it generic enough for use with any
crowdsensing application1. The data has been collected from
hundreds of models of phones in over 175 countries across
many years.

III. PROBLEM STATEMENT

Most work in incentive mechanisms focus on creating incen-
tive mechanisms that are game-theoretically sound and elicit
honest valuation of the work from the participants. Little work
has been done on ensuring that the data that itself is submitted
is adding value to the system. Some work has focused on
incentivizing quality of information by recruiting reliable users
[15]; however, these approaches lack a scalable and secure
approach to validating QoI of sensed information[16] when
the attacker voluntarily submits low quality information. As
a result, the problem in that we address in this paper is how
can a crowdsensing system detect that a participant is
submitting information that they did not actually collect
at the time and location they claim.

A. System Model

Fig. 1: Typical Crowdsensing System

1https://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm

For this project, we assume a generic crowdsensing system
that leverages the data collecting capabilities of large groups
of participants. The goal of the system is to derive meaningful
information for its owner from data collected voluntarily
by participants through aggregate analytics. Incentives are
provided by the system to participants in order to compensate
them for their time and resources used. Figure 1 shows a
generic architecture of a crowdsensing system.

B. Attacker Model

We identify three main attacker models that might be
used against crowdsensing incentive systems. In this work,
we take a first step into preventing them by addressing the
Indiscriminant Data attacker model as it is currently the only
one that has been observed in the wild and is the cheapest for
an attacker to use. In our future work, we will address the
remaining attacker models, so we include them in this section
to motivate discussion.

1) Indiscriminant Data.: In this model, the attacker submits
arbitrary data to the system to receive rewards even though this
data is not valid. This is the most simplistic of the attacker
models, but it is also the lowest cost to the attacker.

2) Realistic Data.: In this model, the attacker has some
domain knowledge of the context that is submitted. As a result,
the attacker can submit data that could realistically fall within
the range of values for the time and location. An example
of this would be to report that the temperature was 20◦C in
Seattle on September 20. This comes at an increased cost to
the attacker in that they must have some knowledge of the
context values for the attack to be successful.

3) Replayed/Generated Data.: In this model, the attacker
submits data that is technically correct, but does not contribute
additional value to the system because this is data that has
either been previously submitted or it has been derived from
existing data. For example, if a system is trying to create a
fine-grained temperature map in a city, an attacker could check
a weather website for that city and use the general temperature
to generate realistic looking data for very specific locations in
that city to collect incentives without actually measuring the
temperature in those locations.

IV. DESIGN

We approach the problem outlined in III by building a
machine learning model, CAPP, to verify the legitimacy
of context packages submitted by crowdsensing participants.
CAPP is initially trained on contextual data previously known
to be malicious or legitimate and once deployed, will be able to
reject crowdsensing submissions based on whether or not their
accompanying context package fits into its existing model.
We evaluate this approach using data supplied by the Device
Analyzer (DA) project II-B.

A. Feature Extraction

In this subsection, we describe the features extracted from
the DA datasets and how they will be processed.

For CAPP, an "environment" is indexed by a location-time
2-tuple and is characterized by features such as temperature



TABLE I: Features extracted from the Device Analyzer datasets

Index Description
Time: time when data was collected, recorded in complete ISO 8601 format
Location: location where data was collected, recorded in latitude and longitude

Numerical Features (Type I) Description
Ambient Temperature: surrounding ambient temperature measured in Celsius
Relative Humidity: surrounding relative ambient air humidity measured in percentage
Pressure: surrounding atmospheric pressure measured in millibar
Light: surrounding ambient light levels measured in lux
Magnetic Field: surrounding ambient magnetic field measured in microTesla on three axes (x, y, z)
Gravity: records magnitude and direction of gravity in m/s2 on three axes (x, y, z)

Nominal Features (Type II) Description
Wifi: records hashes of SSIDs of all discovered Wifi access points
Bluetooth: records hashes of MAC addresses of all discovered Bluetooth devices

recorded within that location over an extended period of time.
The set of features chosen from the DA dataset that best
characterizes any given environment are summarized in table
I. Combined with the 2-tuple index, this results in an initial
dataset dimensionality of 14.

The features chosen can be categorized into two different
types: (1) those that help establish location outdoors, and (2)
those that help establish location indoors. Type 1 features are
numerical, and are those that are representative of the weather
of a location at a given time. However we acknowledge
that the weather might not always be sufficient on its own
in establishing the location of a user, especially when they
are indoors. For instance, it is not improbable that an office
in Houston, Texas, has the same ambient temperature, light
levels, and humidity as an office in Seattle, Washington for
most of the day. For that reason, we include type 2 features.
These are nominal events that are representative of what
smartphones can "physically observe", and includes detected
Wifi access points and Bluetooth devices.

Each of these features are then grouped into 30-minute time
bins to create consistent time intervals and ease computational
costs during testing and training. Groupings for numerical
features are done by averaging observations within the 30-
minute interval whereas groupings for nominal features are
done by concatenating observations into a single list. This set
of data will be referred to as our ground-truth dataset.

B. Fake Data Generation

In this subsection, we discuss how fake contextual data will
be generated to augment ground-truth observations. Fake data
will be generated in three different ways to simulate attacks
from the different attacker models outlined in section III-B.

1) Indiscriminant Data: Contextual data is aribtrarily gen-
erated without respecting bounds. Examples include an am-
bient temperature of -9999◦C or randomly generated Wifi
SSIDs.

2) Realistic Data: Contextual data is generated within
realistic bounds. This means that generated numerical data will

be bounded by the lowest and highest observed value for an
environment, whereas a combination of observed values will
be randomly selected for nominal features. For example, a
temperature of 25◦C in Seattle on the 25th of December.

3) Replayed/Generated Data: Contextual data is generated
by a predictive long short term memory (LSTM model) that
has been trained using a subset of the ground-truth observa-
tions to, given a continuous observations for an environment,
predict the next set of observations for it.

TABLE II: Different types of augmented datasets used to evaluate CAPP

Dataset Description
Indiscriminant
(IDS)

arbitrarily fake data

Realistic (RDS) realistic fake data
Generated (GDS) predictively generated data
All-inclusive (ADS) mix of all categories of fake

data

C. Data Augmentation

The augmented datasets that will be used to train and
test CAPP are created by evenly combining our ground-truth
dataset with fake data. Four different kinds of augmented
datasets, whose descriptions are summarized in table II, will be
created to evaluate CAPP against the different attacker models
in III-B.

In all cases, fake data is introduced into our ground-truth
datasets in the following manner. Given a location-time 2-
tuple, a random combination of features are selected and
their values are replaced with falsified data. For instance, the
following datapoint:

Date, time, location, temp, humidity
20130904, 1730, 58.775|8.863, 21.12, 63.469

could be falsified by replacing either temperature, humidity
or both observations with falsified data. Introducing data this



way allows us to better simulate real-life scenarios in which
an attacker may not have all feature observations and thus
chooses to generate the other missing ones.

V. EVALUATION

A. Experimental Settings

In this section, we discuss CAPP’s configurations. CAPP
uses long short term memory (LSTM) networks in order to be
able to recognize dependencies across a dozen environmental
features over an extended period of time. Furthermore, we use
the sigmoid activation function and binary cross-entropy loss
function as we are dealing with a binary classification problem.

To evaluate CAPP’s classification performance, we measure
resulting F1 and AUC scores. F1 provides insight into how
good CAPP is at correctly identifying malicious users while
at the same time not incorrectly flagging legitimate context
packages as false. Similarly, AUC allows us to determine how
good CAPP is at distinguishing between genuine and falsified
context data.

Initial test runs with CAPP reveals that increasing the
number of neurons in the hidden layer improves the resulting
AUC score. However increasing this to beyond 100 provided
diminishing returns with respect to performance. We find the
optimal number of epochs to be 10, and the optimal batch size
to be 16 using the same process.

B. Experimental Decisions

We build three different versions of CAPP to evaluate how
the number of features used to model an environment will
affect its classification performance:

• CAPP-1 uses only temperature
• CAPP-2 uses temperature and humidity
• CAPP-3 uses temperature, humidity, and pressure
Each version of CAPP will be trained and tested with

a 70-30 split of their corresponding ADS dataset variants,
then evaluated on their corresponding IDS, RDS, and GDS
dataset variants to see how well they hold up against each of
our outlined attacker models.

1) Evaluation Hardware: The preprocessing phase as well
as the testing and training of CAPP was performed on a system
with the following hardware:

• Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz, 12 cores
• 64 GB System memory
• 4 × NVIDIA TU102 [GeForce RTX 2080 Ti]
2) Computational Costs: In this section, we summarize the

computational costs of preparing datasets, training CAPP, and
asking CAPP to verify a context-package.

The preparation of datasets for use with CAPP was the
most intensive process of the project. The total size of raw
data supplied by the DeviceAnalyzer project was in the order
of 10TB over several thousand compressed files. The feature
extraction, normalization, and binning process took approxi-
mately 2 weeks, and resulted final augmented datasets within
the order of 100MB each.

In contrast, training CAPP only took several minutes for
each scenario. Similarly, querying CAPP with a context pack-
age yielded results near instantaenously.

VI. RESULTS AND DISCUSSION

In this section, we discuss the results of evaluating each
CAPP version against all attacker models (i.e. the IDS, RDS,
and GDS datasets).

Fig. 2: AUC and F1 scores after evaluating all CAPP versions on ADS

Fig. 3: AUC and F1 scores after evaluating all CAPP versions on IDS, RDS,
and GDS

Figure 2 compares the AUC and F1 scores obtained by
CAPP-1, CAPP-2, and CAPP-3 after evaluating them on their
respective versions of the ADS dataset. The upper-left plot of
figures 4, 5, 6 shows their corresponding confusion matrices.
We observe that although using more features to describe
a particular environment results in CAPP’s ability to more
reliably distinguish between falsified and legitimate data, it
also reduces CAPP’s F1 score.

Figure 3 depicts the comparison of two metrics: the upper
graph compares the AUC scores each of the CAPP versions
obtained evaluating them on their respective variants of the
IDS, RDS, and GDS datasets, while the lower graph com-
pares the F1 scores. The remaining plots in figures 4, 5, 6
shows their corresponding matrices.



Fig. 4: Confusion matrix for CAPP-1

Fig. 5: Confusion matrix for CAPP-2

Fig. 6: Confusion matrix for CAPP-3

All three CAPP versions are able to reliably distinguish
between indiscriminately falsified data from legitimate data,
with the worst AUC score obtained being 0.91 by CAPP-2
and the best score being 0.96 by CAPP-1. In contrast, all
CAPP versions performed poorly against the realistic attacker,
with the best AUC score being only 0.69 for CAPP-2. These
results could be attributed to the low variance for the chosen
features. The legitimate temperature observations found in our
prepared datasets for instance, had a range of only -7 to 36◦C,

making the probability of getting realistically randomed data
within ±1 of ground truth around 6%. Similarly, neither CAPP
versions were able to defeat the generative attacker, with AUC
scores ranging between 0.48 and 0.58. However, this is to
be expected as it is trivial for a predictive machine learning
model to generate data that looks identical to legitimate data;
however, it does add a cost to the attacker in that they must be
able to train such a generative model for the time and location
they are attacking.

The F1 results obtained by all CAPP versions follow a
similar trend. CAPP-1 performed well against the indscrim-
inant attacker, obtaining a score of 0.93, whereas CAPP-2 and
CAPP-3 performed decently, obtaining scores of 0.73 and 0.75
respectively. However when tested against the generative and
realistic attacker, all CAPP versions were unable to defeat the
more sophisticated attacks, with both CAPP-2 and CAPP-3
obtaining a score of 0.0 in both cases. Recall that given a
legitimate datapoint, we falsify it by only changing the values
of some of its features. It is possible that these datapoints
consisting of a mix of falsified and true feature observations
are confusing CAPP during the training phase, causing it to
misidentify input values during the evaluation phase.

VII. RELATED WORK

While there is an abundance of work exploring the area
of effective incentive mechanisms, most of it is focused on
designing better ways to stimulate participation through the
use of mechanisms such as dynamic pricing or monetary
coupons [17], [18], [19], [20].

Most efforts to ensure that incentives are distributed fairly
tend to focus more on rewarding the right user with their
deserved amount rather than prevent dishonest users from
accepting rewards. For instance, Zhu et al. proposes using
a quality checking module to ensure that only the highest
quality submission gets rewarded [21]. However, they neglect
to provide a tangible set of metrics for what the module
considers "high quality". Similarly, SPPEAR rejects and does
not reward submissions that deviate too far from the norm, but
does not provide any examples of how that might happen [22].
In both these cases, CAPP has the potential to augment the
discussed quality checks by additionally proving that a user
has truthfully collected the information via proof of presence.

The notion of using contextual information to verify and
establish the location of a user is not new. For instance,
Truong et al. proposes using the co-presence of a user and
a verifier in order to facilitate zero-interaction authentication
[23]. Lawrence et al. proposes using the co-presence of mul-
tiple users in order to create a community that can effectively
share information [24]. Though works discuss using contextual
information as a means to prove copresence, but neither have
obtained concrete results to show that this actually works.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the feasibility of using a
context-aware approach to preventing malicious users from
exploiting incentives provided by a crowdsensing system based



on attacks that have been observed in real systems. CAPP
requires that all users wanting to participate in a crowdsens-
ing system submit, along with the required information, a
package containing contextual data that is representative of
their surroundings. Using this package, we show that CAPP
is able to reliably distinguish between a legitimate participant
and a malicious participant whose context package consists of
arbitrarily generated data. We note that although CAPP fails
against the realistic and generative attacker models, the cost
to create context packages in these scenarios for an attacker
can be reasoned to be sufficiently high:

• Realistic Data: the attacker would have to collect envi-
ronmental data of a particular location for a sufficient
amount of time in order to know what a reasonably
generated context package would look like.

• Generated Data: in addition to collecting environmental
data for a sufficient amount of time, the attacker would
also have to train a predictive machine learning model to
output a reasonably looking context package.

In either case, given the computational costs of data process-
ing, the cost of obtaining data is high enough to prevent most
attacks from occurring.

For future iterations of this work, we plan on incorporating
nominal data described in table I to see if that could improve
CAPP’s classification performance. Furthermore, the version
of CAPP described in this paper only looks at a single shot
evaluation. We intend to expand the system with a reputation
system that monitors users’ reported context over time, thus
further magnifying the effort required to reliably generate
realistic fake data.
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