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Abstract—With the proliferation of the Internet of Things
(IoT), numerous IoT devices have been deployed in various
living spaces such as university campuses, community centers,
offices and homes. Users of IoT services are more and more
willing to explore and directly interact with interested devices
over mobile or web applications. However, there is a lack of
online service that can efficiently schedule requests issued by
various IoT users to distributed IoT devices. Efficient, cost-
effective scheduling is critical to the user experience in a smart
living space. In this paper, we propose iService, a cloud-based
scheduling service for efficient usage of IoT resources given IoT-
specific factors, such as device location, sensing capability, and
energy cost. In our solution, the essential scheduling problem
has been formulated as a mixed integer nonlinear programming
(MINLP) problem. To efficiently address this problem in an
online fashion, iService has been implemented using multiple
AWS technologies. Via extensive experiments, the effectiveness of
iService has been demonstrated under different request patterns
and system parameters. From these experiments, we conclude
that iService can improve the quality of service to the user and
thus their quality of life within a pervasive living space.

I. INTRODUCTION

With the rapid growth of Internet of Things (IoT), numer-
ous IoT devices are expanding into various living spaces,
such as smart homes, smart offices, smart campuses, and
smart cities. Because of the convenience and intelligence
provided by IoT services, interacting with these IoT devices
via mobile or web applications has become a routine activity
in our daily lives. In many places such as university campuses
and company offices, many heterogeneous IoT devices are
usually deployed to provide a portfolio of services, which
are typically used in a shared manner by a large number of
users. For example, an IoT printer may provide a “remote
print” service for a group of students, an autonomous robot
may provide a “delivery” service to targeted offices, and a
surveillance camera may provide a “safety check” service. To
use these shared IoT services, users need to submit requests to
avoid time conflicts or resource limitations. However, at peak
times or for popular services, it is difficult to obtain consistent
quality of services due to user competition and inefficient us-
age of IoT resources. This problem may become more severe
when the number of users increases or when the dependency
between services becomes complicated. Therefore, efficient
scheduling tasks shall be performed to make the best usage
of IoT resources given diverse user requirements.

It has been shown by numerous studies across several
different types of systems that excessive delay is one of the
greatest sources of user frustration [1], [2]. Additionally, it
has been shown that such delay not only decreases the users’
quality of experience, but also reduces the effectiveness of the

system (e.g. slow learning in educational systems or less par-
ticipation in community-focused systems) [3]. Furthermore,
frustrating delays have also been shown to reduce user’s
perceived quality of a system [4]. To truly provide a pervasive
living space that enhances the participants’ experience, we
must be able to schedule tasks with minimal delay.

Essentially, such a scheduling problem can be recognized
as an unrelated parallel machine (UPM) scheduling problem.
In the classic UPM scheduling problem, machines are con-
sidered unrelated when the processing time of jobs purely
depends on the machine to which they are assigned, and
there is no relationship between each machine’s processing
speed. Similarly, IoT devices can be interpreted as unrelated
machines whereas IoT requests from users are the jobs to be
scheduled on machines. Research about the UPM scheduling
problem has been widely discussed in the literature, and most
of them targeted on the minimization of total completion
time [5], [6], total tardiness [7] and makespan [8]. Although
these traditional scheduling methods may be employed to
address the need of IoT service scheduling, they are lack of
the consideration of unique scheduling factors such as device
location, sensing capability, and energy cost for IoT.

To fill this gap and make efficient usage of IoT resources,
we propose a cloud-based scheduling service in this paper,
called iService. When designing the core scheduling scheme
of iService, we explicitly consider unique IoT factors such
as device heterogeneity, energy cost, device location, number
of concurrent users allowed by a service, and short execution
time of an IoT service. Such an IoT-unique scheduling prob-
lem has been formalized as a mixed integer nonlinear pro-
gramming problem (MINLP). To satisfy the online scheduling
needs, iService has been implemented using multiple AWS
technologies and hosted in cloud as a scalable web service.
In particular, an MINLP solver has been employed by iService
to handle varying service requests and make the most efficient
schedule of them to utilize distributed IoT resources. Figure 1
illustrates iService’s high-level design. To the best of our
knowledge, this is the first work on studying IoT-specific
service scheduling problem and implementing the scheduling
framework as an online service.

The rest of this paper is organized as follows. Section II
describes the system model and formally present the studied
problem. The design and implementation details of iService
are discussed in Section III, and the performance evalua-
tion results obtained from various experiments are shown in
Section IV. Related work on job scheduling algorithms are
reviewed in Section V. Section VI concludes the paper and
discusses future research avenues.



Fig. 1. High-level design of iService

II. ANALYSIS

In this section, we describe the system model and formally
present the problem of IoT service scheduling.

A. System Model

The considered system consists of four key components,
device, service, request, and scheduler.
• An IoT device di is equipped with one or more sensors,

and it is deployed at location (xi, yi). Given its available
energy level ei at the scheduling time, di may support a
set of IoT services. D is the set of devices that can be
accessed by a scheduler.

• An IoT service si is of various types of operations
supported by an IoT device. When a service si is running
on device dj , it may be completed without interruption
in λi,j seconds at an energy consumption of δi,j joules.
Additionally, service si can only support up to ui,j
number of concurrent users on device dj . Different
devices many support the same type of service, but
the corresponding processing time, energy consumption
and number of allowed users may vary. S is the set of
services supported in the system.

• A request ri can ask to use a group of services available
on some device in an interested area centered at (xi, yi)
with a radius of φi. All the services in a request group
must be of different types and sequentially executed on
the same device, and multiple requests may be executed
on the same device simultaneously. R is the set of
requests a scheduler needs to schedule.

• A scheduler keeps running in the system. At time t, it
schedules a set of requests R to execute on any device
in D. A request ri arrives (having been accepted by the
scheduler) at time ai with an expected completion time
of ci, which may be different from the actual completion
time. The processing time of request ri is denoted as pi,
which depends on ri’s preceding requests scheduled to
be executed on the same device.

B. Problem definition

Given the models described above, we can formally define
the scheduling problem as follows.

• Objective:
min {M}, where M can be defined as

– either the maximum makespan of all requests:
M = max {t+ pi − ai}, ri ∈ R,

– or the maximum tardiness of all requests:
M = max {t+ pi − ci}, ri ∈ R.

• Given:
– A: arrival time vector, where ai is request ri’s arrival

time.
– C: expected-completion time vector, where ci is

request ri’s expected completion time.
– SD: service-device matrix, where sdi,j indicates

service si is available on device dj .
– SR: service-request matrix, where sri,j indicates

service si needs to be used by request rj .
– ∆: energy consumption matrix, where δi,j indicates

the total energy consumption to complete all of
request ri’s services on device dj .

– Λ: processing time matrix, where λi,j indicates the
total processing time to complete all of request ri’s
services on device dj .

– E: device energy vector, where ei is device di’s
energy level at the scheduling time.

– L: device location vector, where li contains device
di’s location (xi, yi).

– RL: request location vector, where rli contains
request ri’s requested center of location (xi, yi).

– Φ: radius vector, where φi is the radius allowed by
request ri.

– U : user matrix, where ui,j is the number of concur-
rent users allowed by service si on device dj .

• Output:
– W : decision matrix, where wi,j = 1 if request ri is

scheduled to execute on device dj ; 0 otherwise.
– Π: precedence matrix, where πi,j = 1 if request ri

shall be executed before rj . In particular, πi,i = 1
if request ri is the first one to be executed.

• Subject to:
– Processing-time constraint, ∀ri ∈ R
∗ pi =

∑
rh∈R,h 6=i πh,i · ph +

∑
dj∈D wi,j · λi,j

– Energy constraint, ∀ri ∈ R
∗

∑
dj∈D wi,j · δi,j 6 ej

– Location constraint, ∀ri ∈ R
∗

∑
dj∈D wi,j ·

√
(xi − xj)2 + (yi − yj)2 6 φi

– User constraint, ∀si ∈ S
∗

∑
rk∈R,rh∈R sri,k · wk,j · πh,k 6 ui,j

– Single-device constraint, ∀ri ∈ R
∗

∑
dj∈D wi,j = 1

– Single-precedence constraint, ∀ri ∈ R
∗

∑
rk∈R πk,i = 1

In this formalized problem, ∆ and Λ can be computed us-
ing matrices of SD and SR along with each service’s process-
ing and energy consumption information. The processing-time



constraint specifies request ri’s processing time is dependent
on the processing time of all requests scheduled before it
(i.e., limited by πh,i) on the same device. The user constraint
specifies the total number of requests using the same service
si (i.e., indicated by sri,k) on the same device dj must not
be over the limit ui,j .

Obviously, many of the input and output variables in the
definition are 0-1 integer numbers. Moreover, the constraints
are nonlinear in nature with the goal of minimizing the
objective function. Therefore, this scheduling problem can be
classified as a MINLP problem, which is NP-hard. In order
to solve this problem, we employ an MINLP solver when
implementing iService, the details of which will be presented
in Section III-B.

III. DESIGN AND IMPLEMENTATION

In this section, we discuss the design and implementation
details of iService.

A. Design overview

Our design goal is to develop an auto-scale cloud-based
service which can handle time-varying volumes of IoT re-
quests from different users. To achieve this goal, multiple
AWS technologies are utilized for their intrinsic support of
manageability and scalability. Figure 2 shows the key com-
ponents in the design of iService, and the overall workflow
is as follows.
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Fig. 2. Key components of iService

• When an IoT request is submitted, the front-end UI
validates the request and sends it in JSON format to
a First-In-First-Out (FIFO) queue implemented using
Amazon Simple Queue Service (AWS SQS). This way,
user requests can be buffered and retrieved in their exact
arrival order without a loss, even at a high volume.

• Later, an AWS Lambda function (invoked either periodi-
cally or on-demand per user’s specification) retrieves the
request from SQS and post it to a RESTful web appli-
cation, which is deployed on AWS Elastic Beanstalk. In
our implementation, AWS Lambda is utilized to auto-
matically trigger other AWS services, which saves effort
on provisioning and managing servers. Additionally, we
use AWS Elastic Beanstalk to host our RESTful web
application, because AWS Elastic Beanstalk can auto-
matically handle web service jobs such as deployment,
capacity provisioning, and load balancing. The RESTful

web application’s main responsibilities are to validate
and classify user requests, construct data files for the
scheduler, invoke scheduler, and retrieve and execute
scheduling decisions.

• Finally, a remote connection is established between the
AWS Elastic Beanstalk and the AWS EC2 instance
where the scheduler is installed to process requests. The
scheduler running on EC2 is responsible for allocation
of IoT requests to devices and exchanges of scheduling
information with the web application. Based on the
output from the scheduler, iService assigns individual
IoT requests to selected devices, and logs the execution
history into a MySQL database.

B. Scheduler

To solve the formalized scheduling problem, we install
AMPL [9] and Bonmin [10] solver on an Amazon EC2 Linux
instance, which effectively serves as a scheduler.

In this scheduler, Bonmin is the core solver, which features
several algorithms such as the “branch and bound” algorithm,
“branch and cut” algorithm, etc. As our problem is identified
as a MINLP problem, the “branch and bound” algorithm
provided by Bonmin is an efficient solution for MINLP
problems and thus is configured as the default algorithm of
the scheduler.

AMPL, on the other hand, enables high-level algebraic
representation of an optimization problem. With the help of
AMPL, iService can effectively decouple dynamic values of
input variables (as presented in Section II-B) and static model
files (which do not change given different input parameters).
Figure 3 illustrates the scheduler’s internal modules along
with the inputs and output variables.

In order to efficiently use AMPL, iServie creates model
and data files at different time and uses them as follows to
complete a scheduling task.

• Model file. This file contains the core logic for solving
the problem. We define the objective, input parameters,
output variables, and constraints in it. When imple-
menting iService, four different model files have been
prepared and stored on the EC2 instance. In addition to
the files for the objectives of “minimizing the maximum
makespan” and “minimizing the maximum tardiness,”
the model files for the objectives of “minimizing the
sum of makespan” and “minimizing the sum of tardi-
ness” have also been defined, all of which can be used
according to the web application’s configuration.

• Data file. This file contains the input data needed by
the model file. When the web application triggers the
scheduler to execute, this data file is generated at run-
time using the information of requests to be scheduled.
For example, the service-request matrix, the device en-
ergy vector, and other dynamically changed information
with each batch of requests can be captured in this data
file, and feed to the static model file that has already
been placed on the scheduler’s EC2 instance.



By using separate model and data files to describe the
scheduling procedure, the web services and scheduler pro-
gram can operate independently and also adapt to changes of
use requests.

Fig. 3. Input and output of scheduler

C. States in request processing

To track the status of each request, iService periodically
updates the states of all incomplete requests by checking their
arrival time, scheduled start time, and scheduled completion
time. The transitions between states are depicted in Figure 4.

Fig. 4. States in processing of requests

• Queued. When a user provides the request details and
submits the request for processing, the request is pushed
to queue and enters the “queued” state. All requests in
queued state will be considered for scheduling when
their information is posted to the web application.

• Scheduled. In this state, the request has been scheduled
to run on a particular device but the device is busy
processing other requests that are scheduled prior to this
request. This type of requests can also be considered
for rescheduling, when the scheduler checks if there is
a possibility to serve this request by some other device
so as to further optimize the scheduling objective.

• Running. In this state, the request is being processed by
some device and it will not be interrupted or considered
for further scheduling process.

• Completed. When the device completes processing a
request, the request is said to be in completed state.

When a request’s state is updated, the corresponding user
count, as well as available energy, are updated in database.

IV. PERFORMANCE EVALUATIONS

Extensive experiments have been conducted to evaluate
the performance of iService with varying request pattern and
device availability.
• Request pattern. The request pattern depends on the

services requested by users. If all the requests to be
scheduled demand the same set of services, the request
pattern is considered homogeneous. Whereas if all the
requests demand different set of services, the pattern is
considered heterogeneous.

• Device availability. This is defined as the ratio of devices
available to serve IoT requests at any point of time.
When a device’s energy is too low, it is considered
unavailable.

Each of these two parameters, along with the number of
requests to be scheduled, can affect the search space of the
employed solver, and thus significantly affect the computing
time for the scheduler to find the optimal schedule.

A. Evaluation Results

In the first set of experiments, we evaluated the computing
time for the scheduler to find the optimal schedule (feasible
solution) under homogeneous and heterogeneous request pat-
terns. From Figures 5 and 6, we can find that it takes more
time to find the optimal schedule when the number of requests
increases. Additionally, the computing time is consistently
longer given heterogeneous request patterns. This is because
requests of heterogeneous pattern use a more diverse set of
services, which creates a larger search space. Therefore, it
takes longer time to find the best solution. From these results,
we can get the insight that it is critical to limit the size of
request group for every scheduling activity, such that a low
computing time will be needed and thus users only experience
short service delay.
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Fig. 5. Computing time for homogeneous request pattern

In the second set of experiments, we varied the device
availability to evaluate its effect on the time to find the best
schedule. For these experiments, the number of requests is
fixed to three and each request asks for one service. Initially,
the experiment was conducted by setting 25% of devices
online. This resulted in finding a feasible solution in a much
short time. When the availability increases, it can be seen
from Figure 7 that the computing time increases for both
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homogeneous and heterogeneous request patterns. This is
due to the fact that the scheduling algorithm must explore a
larger search space when more devices are online. From these
experiments, we can learn that certain filtering mechanisms
based on device similarity, energy level or shall be performed
before handing over requests to scheduler. This way, the
service delay can be practically reduced without affecting the
service quality provided by needed devices.
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To measure the latency overhead introduced by the usage of
AWS technologies, we have also evaluated the time consumed
at each stage of the processing flow and the obtained results
are listed in Table I. From these results, we can tell that the
latency overhead is negligible compared to AWS’s benefits of
auto-scalability and effortless manageability.

TABLE I
LATENCY OF CLOUD-FRAMEWORK

Core components involved Time
User Interface to SQS queue < 1 s
SQS queue to Lambda to Elastic beanstalk(On-demand) 1 ∼ 30 s
Elastic beanstalk to Elastic compute cloud < 1 s

B. Discussion about operational cost

Since iService is developed using AWS, monthly opera-
tional cost is inevitable. In order to lower the cost, different
scales of AWS services can be used according to the estimated
volume of IoT requests. Presumably, it would be sufficient to
use lower computing resources when request volume is low
(e.g., less than 3600 requests per hour) and appropriate to

use larger computing resources when the volume is high (e.g.,
greater than 18000 requests per hour). Tables II) and III) com-
pare the cost in these two cases. Apparently, the costs of EC2
instance and Elastic Beanstalk are much higher than other
costs. Motivated by this observation, we have also conducted
another set of experiments to evaluate whether the scheduler’s
actual performance is affected by the computing capability of
EC2 instances. In these experiments, the computing time is
evaluated under various number of requests by using both
micro and large EC2 instances, and the obtained values are
similar on both small and large scale EC2 instances. This
result indicates that the request pattern, device availability and
size of request group are dominant factor on the total time
of service scheduling. Additionally, this result also suggests,
without using an high-cost EC2 instance in practice, iService
can still operate in an economical way while preserving a
desired performance level.

TABLE II
AWS CLOUD COST - SMALL SCALE

AWS Technology Cost
SQS $1.00 per month ($0.50 per million requests)
Lambda $0.40 per month ($0.20 per million requests)
Elastic Beanstalk $33.40 per month (t2.medium EC2 instance)
EC2 instance $33.40 per month (t2.medium EC2 instance)
RDS - MySQL Instance $24.48 per month (db.t2.small)
Amazon S3 $0.021 per GB per month

TABLE III
AWS CLOUD COST - LARGE SCALE

AWS Component Cost
SQS $6.00 per month ($0.50 per million requests)
Lambda $2.40 per month ($0.20 per million requests)
Elastic Beanstalk $276.48 per month (m5.2xlarge EC2 instance)
EC2 instance $276.48 per month (m5.2xlarge EC2 instance)
RDS - MySQL Instance $97.92 per month (db.t2.large)
S3 $0.021 per GB per month

V. RELATED WORK

The cloud-based scheduling service is a novel design
for scheduling IoT requests. However, there exists a large
amount of research solving traditional scheduling problems.
The closest work to the IoT service scheduling problem is
the unrelated parallel machine (UPM) scheduling problem.

When solving the classic UPM scheduling problems, min-
imizing the total completion-time, the total tardiness and the
total makespan of the jobs are the three major objective
functions. Under these objective functions, there have been
many heuristic algorithms proposed according to the rules
listed in [11]. Some of the widely used scheduling heuristics
are earliest due date (EDD), longest processing time (LPT),
weighted shortest processing time (WSPT), first come first
served (FCFS), most work remaining (MWKR) and least
work remaining (LWKR). Though heuristic algorithms are
more effective than pure optimization algorithms, the perfor-
mance depends on two major factors, objective and problem
model. When the classic UPM model does not well match a
new problem, existing heuristic algorithms may be ineffective.



Since the job processing time is stochastic in nature, there
are also plenty of research work focusing on stochastic model
rather than dealing with classic, deterministic model. Shim et
al. [12] addressed stochastic scheduling problem on unrelated
machines by introducing time-indexed linear programming
relaxation to reduce the total weighted completion time.
Authors in [13] determined that combinatorial algorithm can
be used to solve stochastic and non-preemptive scheduling
problems to minimize the expectation of the total weighted
completion time. In these works, there is only a single objec-
tive and the number of constraints is typically small. When the
number of objectives or constraints increases, the comlexity
of the problem also increases. In this case, genetic algorithms
are one of the heuristic techniques that use random search to
find the best heuristic solution. Researchers have used genetic
algorithms to solve some of the scheduling problems such
as the single machine unweighted tardiness problem [14]–
[16], single machine scheduling subject to breakdowns [17]
and classic job shop tardiness scheduling [18], [19]. However,
there is no guarantee that genetic algorithms will provide an
optimal solution even for small size problems.

Branch and Bound algorithm (B&B) is one of the most
common methods to find optimal solutions for discrete and
combinatorial problems. Multiple instances of the scheduling
problem with different machines are generated and solved
using B&B [20]–[22]. Authors in [8] formulated a zero-one
mixed integer program (MIP) and developed B&B to mini-
mize the makespan on unrelated parallel machines. Moreover,
B&B is also guaranteed to find the best possible solution if
it explores the full search space, and it’s more efficient when
the B&B algorithm can prune the search space in practice. In
our solution, we solve the IoT service scheduling problem by
using the Bonmin solver [10] which implements an efficient
B&B algorithm.

VI. CONCLUSION

In this paper, we proposed a design of cloud-based online
scheduling service, called iService, with the purpose of en-
hancing the quality of service in pervasive living spaces. Dif-
ferent from traditional scheduling problems, the core problem
addressed in iService’s design considers IoT-specific factors
such as device location, sensing capability, and energy cost.
Such a unique scheduling problem has been formulated as
a mixed integer nonlinear programming (MINLP) problem.
The proposed iService framework has been implemented and
deployed to AWS, and its effectiveness have been demon-
strated via extensive experiments under different request
patterns and system parameters. Although iService is a novel
approach for online scheduling of user requests on various IoT
devices, there are several future directions worth exploration.
In the current implementation, Bonmin is employed to solve
the scheduling problem, but there are also several MINLP
solvers such as BARON, AOA, and Knitro. As future work,
a comparison study can be conducted in order to examine
which one performs the best under the context of IoT service
scheduling.
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