You Had to Be There: Private Video Sharing for
Mobile Phones using Fully Homomorphic
Encryption

Brent Lagesse*, Gabriel Nguyen', Utsav Goswami* and Kevin Wu®
Computing and Software Systems
University of Washington Bothell
Bothell, WA USA
Email: *lagesse@uw.edu, Tgaben@uw.edu, iutsavg@uw.edu, Skevinw9 @uw.edu

Abstract—Smart phones and other small, low-cost video cam-
eras have enabled the creation of billions of hours of video
content. Many of these videos contain private content that the
users want to share with a limited group of people, not all of
whom they know. In this paper, we address the problem of
sharing videos from different perspectives of the same event
without either party revealing any content of the video until
it has been established that the videos were of the same event.
To address this problem, we designed and implemented a system
that can detect similar videos and efficiently be run under a fully
homomorphic encryption scheme on mobile devices.

The resulting system was able to achieve a precision of 0.9932
and an F1 score of 0.9797 for determining the same videos.
The algorithm was able to test a video in 0.4 seconds on an
Android 9.0 Pixel 2 and run end-to-end in 1.5 seconds. As a
result, participants in an event can share videos with each other
to gain a full perspective of the event without releasing the videos
to people who were not present.

I. INTRODUCTION

With billions of smart phones and other devices capable
of recording video deployed across the world, there is a great
opportunity to archive more of personal and world history than
ever before. Sources estimate that YouTube users upload over
500 hours of video per minute [1]. Additionally, people have
begun to develop systems that utilize these cameras such as
lifelogging systems[2] that record audio, video, images, and
other data to assist people in increasing self-awareness and
augmenting memories.

These types of systems, along with the general ability to
record scenes that a person may want to share with a limited
group, but not with the general public have also raised a
number of security and privacy concerns[3]. The goal of
privacy in this work is to limit video distribution to people
who already have video recordings of a given event. Previous
work has focused on protecting bystanders in the video and
protecting the owner of video from memory manipulation, but
no work has addressed the ability to share video privately.
There are many situations in which a person may be at an
event where they do not know everybody, but the content of
the event may not be the type of material for indiscriminant
public availability. For example, events involving children such
as birthday parties, school plays, and sporting events may be

considered sensitive. Similarly, events or meetings that discuss
matters sensitive to oppressive governments also fall into this
category. The goal of our work is to enable the user to
identify videos from people who were co-present at an
event without revealing any of either video to anybody
until it has been determined that they were co-present.

In this paper we present our Proof of Presence system, PoP-
Share, for sharing videos with previously unknown people
who were co-present at an event. We have developed two
architectures for the video distribution system. The first ar-
chitecture, a client-server architecture, enables users to offload
computation from the mobile phone to a cloud server. We also
developed a P2P architecture that performs computation on the
mobile phones, but is secure against a more advanced attacker
model. To enable videos to be compared privately, we utilized
a fully homomorphic encryption (FHE) scheme which enabled
us to perform calculations directly on encrypted data, thus
hiding the contents from the party executing the comparison.

Contributions. The major contributions of our work are
summarized as follows:

1) Development of a scene similarity detection system
using FHE described in section III-E

2) Implementation of a privacy-preserving video sharing
application for Android, Raspberry Pi, and PC described
in section IV-A

3) Demonstration of the feasibility of FHE video similarity
computation on a mobile platform via extensive perfor-
mance testing described in section IV.

II. BACKGROUND
A. Similarity of Simultaneous Observations

Wu and Lagesse [4] presented Similarity of Simultaneous
Observation (SSO) in which they leverage similarities in video
encoding to detect hidden cameras. In this work, they recorded
the rate of bytes transmitted over the network by devices using
a network interface in monitor mode and compared those data
streams with the encodings of a known camera monitoring
the same area. This is possible since common interframe
compression algorithms used in most modern video codecs

1. Encrypt Data and Send with Context
3. Return Results 0

4. Decrypt and Decide 5. Send Video 2. Compute Similarity

Fig. 1: Peer-to-Peer Protocol

G 3. Compute Similarity

2a. Encrypt and Send Data 2b. Encrypt and Send Data

4b. Return Results
4a. Return Results

1. Exchange Keys and Context

5a. Decrypt and Decide 6. Transfer Video 5b. Decrypt and Decide

Fig. 2: Client-Server Protocol

use less data to encode frames in a video when there is very
little change in the video and use more when there is change
occuring within the video scene. They then used several
different similarity measurements such as correlation coef-
ficient, Kullback—Leibler divergence (KLD), Jensen-Shannon
divergence (JSD), and Dynamic Time Warping (DTW) dis-
tance. They then trained classifiers on these measurements and
demonstrated F1 scores over 0.95.

B. Homomorphic Encryption

We have chosen to use FHE to perform the calculations
over possible partially homomorphic encryption because FHE
enables our choice of similartiy measures and provides exten-
sibility and flexibility to improve performance in the future.
Homomorphic encryption allows computations on encrypted
data that will persist when the data is decrypted. One of our
major contributions is designing the system so that it is compu-
tationally efficient under fully homomorphic encryption. To do
this, we use Microsoft SEAL[S5] which implements the BFV
cryptosystem and a FractionalEncoder in version 2 and the
CKKS cryptosystem in version 3 which is more efficient when
computing on real numbers.

III. DESIGN

We address three major challenges that had to be overcome
to build this system. The first is the computational complexity
of fully homomorphic encryption. The second is the mini-
malistic FHE libraries that are currently available. The third
is the architectural design necessary to ensure both secure
and computationally efficient processing. As a result of our
design, we were able to drastically reduce the amount of data
that needs to be processed and identify algorithms that could
process data under a fully homomorphic encryption scheme
with minimal errors and sufficiently low computational cost
for a usable, secure system.

A. FHE Design Concerns

In order to run FHE efficiently on a mobile device, The
appropriate computation and parameters must be selected. We
have addressed this through the similarity detection algorithms

we have selected to maintain a balance of classification per-
formance, security, and computational performance. We have
devised methods for implementing each algorithm in such a
way that it avoids costly multiplications, relinearizations, and
operations where multiple operands are encrypted.
Polynomial Modulus. The size of the polynomial modulus
affects performance. The larger the modulus the longer compu-
tations will take; however, a large polynomial modulus means
that more operations can be performed before the decoded
value becomes invalid. We address this in our similarity
measurement choices by identifying algorithms that can run
on with a 4096-bit polynomial modulus or less.

Noise Budget. One of the concerns about the CKKS cryp-
tosystem is the noise growth that exists in the system. As
operations are performed on a ciphertext, the noise associated
with it grows. When that noise grows too much, the decryption
will fail to produce the correct result. Relinearization is a
process that can reduce a ciphertext back to its original
size after multiplication; however, the relinearization process
itself is very costly. Our system avoids the need for costly
relinearizations as our early experiments showed they were
causing our algorithm runtime to increase by a factor of 6.

B. System Model and Assumptions

We define a scene to refer to the portion of an event that a
video captures. In our system, multiple participants at an event
take video of the same scene at the same time. The participants
can be positioned at any relative angle to the scene and can
have varying levels of overlap of the scene. We do not assume
that the users have temporally synchronized recordings, but we
do assume that the videos do have some temporal overlap. Our
system quickly identifies approximately 95% of true positives
with about 15 seconds of video, but we try to identify at least 1
minute of video overlap to reduce false positives to under 3%.
The more overlap that is found, the greater the performance.

Many modern mobile phones are equipped with image
stabilization, Electronic (EIS) or Optical (OIS). While we
assume the user is recording the video in a mostly static
position and attempting to hold the phone still, the stabilization
features will ensure that there is minimal movement in even
very shaky videos'.

C. Attacker Model and Assumptions

The focus of this work is to prevent an attacker from gaining
information that they could not have acquired without being
present at the event that was recorded. As a result, we assume
that the attacker does not already have a video of the scene
that we are trying to share (either through being physically
present or otherwise acquiring one). The attacker can serve as
either the initiator or the recipient of a video transfer request.
The attacker can eavesdrop and modify any communications.

In the case of the client-server architecture, we assume that
the attacker does not control both the server and one of the
participating clients. The security of that scheme relies on the

Thttps://www.youtube.com/watch?v=x5rHog6RnNQ

server not having a copy of the private key used for decryption
of the results.

D. Algorithm Selection

The algorithm used for SSO in [4] included 4 distance
measurements, KLD, JSD, Correlation Coefficient, and DTW.
We analyzed the construction of these algorithms under FHE
and determined that the existing work was not feasible due to
computational cost and errors from approximation. We have
modified the distance measurements used for our system due
to the fact that the functions supported by SEAL require
very costly and sometimes inaccurate approximations for some
of the distance measurements. Instead, we identified KLD,
Bhattacharyya distance, and Cramer distance as measurements
that are easy to implement in FHE and provided improved
results over the previous work. Table I shows the mean error
achieved on our approximations required by the FHE library.

TABLE I: Error Caused by FHE Approximations

Func Mean Error
KLD 4x107Y
Cramer 8 x 10~ %
BC 1.3 x 1071

E. System Architecture

Our system provides support for both a Client-Server archi-
tecture and a P2P architecture. The client-server architecture
in figure 2 enables mobile devices to offload computation to
a (presumably more powerful) third party. Due to space con-
straints, we describe only the P2P version of the architecture
in detail. A nonce is included to prevent replay attacks. The
keypair used is unique for each transaction.

1) Peer-to-Peer: The P2P architecture in figure 1 enables
mobile devices to avoid the possibility of an attacker collabo-
rating with the third party server.

(a) Encrypt Data and Send with Context. The user that
is making the decision whether or not to share the video
preprocesses the video and encrypts it. The encrypted data
and the context is sent over a TLS connection.

(b) Compute Similarity. The other user computes all of the
requisite similarity scores. The other user cannot see what
effect their inputs have other than if they get the file or not.
(c) Return Results. The encrypted results are returned to the
decision-making user.

(d) Decrypt and Decide. The decision-making user decrypts
the results and makes a decision.

(e) Send Video. If the decision-making user is satisfied, they
send the video to the other participant.

2) Data Preprocessing and Precomputation: To efficiently
use FHE, we needed to identify operations that could be
performed on the unencrypted data so that we minimize the
amount of work that had to be performed on encrypted data.
In particular, multiplication causes the most rapid degradation
of noise budget that can lead to the inability to decrypt the
final result. Likewise, we identified operations that could be

performed on a single ciphertext and an encoded plaintext
(which is much less expensive than an operation performed
on two ciphertexts).

Figure 3 describes the pre-processing portion of the system.
The first step that we take is to identify all the videos that will
be compared. In the case of the initiating party, this is all of
the videos the user selects related to the event that the want to
acquire more videos from. In the case of the sharing party, we
do this by using timing metadata from the videos themselves to
identify videos that could have feasibly taken place at the same
time. It also allows us to align the video arrays appropriately.
This step is not absolutely required, but it drastically cuts down
on the number of times the FHE computations need to be run.

The next step we take is to convert videos into a bytecount
array and then normalize it so that it sums to 1. These
arrays capture the number of bytes required by the intra-frame
compression algorithm to encode a single second of video.
The more movement in a second of video, the more bytes
are used to encode it. This process has two main advantages,
one for privacy and one for performance. Since we are only
performing operations on the number of bytes encoded in a
particular timestep, if an attacker later broke the encryption
on this data, they would not learn the content of the video;
however, we must use FHE for the similarity check because
if the attacker knew the byte count values, they could craft
a fake bytecount array that would result in the an incorrect
classification that the videos were the same. Our algorithm
is now performing operations on a much smaller amount of
data. For examples, many of our experiment videos are reduced
from 50-100 MB down to 2560 bytes of data, thus making it
feasible to perform fully homomorphic encryption operations
in a reasonable amount of time.

We chose to precompute the logarithm of all the values
we needed on the client side in plaintext, then encrypt those
values for computation later. Additionally, direct division is
not possible in the SEAL library; however, it is possible to
compute the inverse of a value and then multiply by the
encrypted inverse, so by avoiding division, we save on the
number of encrypted values we have to send. This design
decision resulted in a small increase in preparation time and
data sent, but saved us significant amounts of time and error
in the final computation.

Due to the choices we have made in the similarity measures
and how we calculate each of those, we can achieve usable
computation times by only sending the following encrypted
data (each array is 640 bytes):

o Normalized byte count array in Probability Distribution
Form (Used in KLD)

o Natural Log of normalized byte count array in Probability
Distribution Form (Used in KLD)

o Normalized byte count array in Cumulative Distribution
Form (Used in Cramer)

¢ Square root of normalized byte count array in Probability
Distribution Form (Used in Bhattacharyya)

User Identify
Initiates Feasible Cached?
Share Videos

Process
into Byte
Array

Normalize
Byte Array
PDF
(PDF) To
Encryption

Compute
CDF Array

PDF Log Array

Sqrt Array

Fig. 3: Preprocessing and Precomputation Process

IV. RESULTS

In this section we describe our implementation of PoP-Share
and the computational performance results on a variety of
devices. We demonstrate that PoP-Share can effectively run
on mobile devices and include results from several other types
of devices for comparison.

A. Implementation

We have two implementations of PoP-Share. The first
implementation, designed to run on most platforms, is written
in Python 3.6 and uses PySeal[6] as a wrapper for the SEAL
library. The current version of PySeal supports SEAL 2.3,
so this implementation uses the BFV implementation of fully
homomorphic encryption. Our PC tests run the 64-bit Linux
version on Ubuntu 18.04.2. Our Raspberry Pi tests run the
AArch64 build on Ubuntu MATE 18.04.2 for Raspberry Pi
ARMVS 64-bit system.

Our second implementation is designed to run as an Android
App. The app is built for Android 9.0 and runs on 64 bit
CPUs. The app uses SEAL 3.3[5] built using the Android
NDK, so this implementation uses the CKKS implementation
of fully homomorphic encryption. We have implemented all
of the FHE functionality in native C++ with a JNI wrapper to
be accessed through the Android app.

B. Experimental Setup

Unless otherwise noted, experiments were run on the fol-
lowing devices. FHE experiments on Android were run on
a Google Pixel 2 with 4 GB of RAM. Experiments on the
PC were run on a 4" generation Lenovo Thinkpad Carbon
X1 laptop with an Intel i7-6600U CPU and 16 GB of RAM.
Experiments on the Raspberry Pi were run on a Raspberry Pi
3b with a 1 GB of RAM.

TABLE II: Table of FHE Parameters

Parameter Value
Polynomial Modulus 4096
Coefficient Modulus 111
Plaintext Modulus 512
Decomposition Bit Count 60
FractionalEncoder Integer Part 32
FractionalEncoder Fractional Part 16

Table II describes the parameters that were used for our
experiments unless otherwise noted. Polynomial Modulus de-
fines the degree of the ring on which we are performing
operations. The larger the modulus, the greater the security
and our ability to perform more operations; however, larger
ring sizes will slow computation. We are able to perform all
of our computations with a polynomial modulus of 4096 with
128 bits of security.

We performed tests using the dataset collected in [4]. This
dataset includes 15 hours of video captured from a Nexus 6p
and a D-Link Wi-Fi camera (DCS-936L) with H.264 encoding
along with 4.33 hours of other videos from the Internet.
These videos include a wide variety of movement, angles, and
activities from indoor and outdoor settings.

We have also augmented this dataset with 150 minutes
of additional video that we have collected by a handheld
mobile phone to ensure a realistic user model since the
videos collected by [4] were by mounted devices, so they
lacked the natural shakiness that would be present when a
person was recording an event. This is shown in table V
as “Handheld”. These videos were recorded with a Google
Pixel 2, a Motorola Moto Z, a Lenovo Phab2 Pro, an LG
Nexus 5, and a Huawei Nexus 6p. All phones captured video
using h.264 with 3840x2160 resolution at 30 FPS with OIS
enabled except the Nexus 5 and Phab2 Pro which only support
1920x1080 resolution and the Nexus 6p which only has EIS.
The recordings varied both distance and angles.

C. FHE Timing

The purpose of these results is to provide a performance
baseline and demonstrate the conditions under which it is
feasible to use PoP-Share. Preprocessing on a Pixel 2 mobile
phone took, on average, 17 seconds for a 1 minute video,
but it can be done offline between the recording and shar-
ing of videos. The TLS handshake and data transfer takes
0.25 seconds. Similarity computation takes 1 second. Result
transfer takes less than 1 ms. Decryption takes 0.25 seconds.
The overall online latency for checking a single video is
approximately 1.5 seconds for a 1 minute video. Table IV
demonstrates the performance of the algorithms on different
system types with 128-bit security. Table III shows the cost

increase by using FHE over plaintext operations on a mobile
phone.

TABLE III: Comparison of FHE Operations vs Plaintext
Operations in Milliseconds

Measure FHE | PT | Percent
KLD 400 3.8 | 10526%
Cramer 386 5.2 7423%
Bhattacharyya 186 3.2 5812%

Pre-Processing Time. Relative to calculating similarity mea-
sures, pre-processing, including encoding and encryption, can
be expensive. In SEAL 3.3 on a PC, preprocessing for Bhat-
tacharyya and Cramer each take about 110 ms and in SEAL
2.3 they take about 372 milliseconds on average. KLD takes
about 220 milliseconds and 763 milliseconds, respectively
since twice as much data is required for KLD. For the same
reason, on the Android phone, Bhattacharyya and Cramer each
take about 4.2 seconds and KLD takes 8.5 seconds. While this
is a large amount of time for pre-processing on the mobile
phone, this is a process does not have to be run every time. As
noted in figure 3, we cache the results after a video has been
processed, so this is only a one time cost that can be incurred
during the time between recording a video and sharing the
video, so it is unlikely to be noticed by the user.

TABLE IV: Comparison of Computational Time in ms for
Different Systems under CKKS

System Bhatt | Cramer | KLD
Android 186 386 400
PC 18.2 19.1 19.3
Server 20 21 22

Mobile Performance. The performance on the Android device
was similar to or better than that of the SEAL 2.3 PC im-
plementation that uses FractionalEncoder rather than CKKS.
On average, KLD ran in 400 ms, Cramer in 386 ms, and
Bhattacharyya in 186 ms.

PC Performance. On the PC in P2P mode, KLD ran in 19.3
ms, Cramer ran in 19.1 ms, and Bhattacharyya ran in 18.2 ms
on the CKKS cryptosystem. Bhattacharyya produces so little
noise that it can run on a much lower dimension ring than the
other algorithms. At 2048 bits it runs in 21 ms and at 1024
bits it runs in 10 ms for SEAL 2.3 and 5.8 ms and 3.2 ms,
respectively, for SEAL 3.3.

Server Performance. In the case of the client-server archi-
tecture, a 3"¢ party computes the scores for the two parties
interested in sharing videos. As a result, computations are
performed on two cryptotexts rather than on a cryptotext and
an encoded plaintext. This results in a slight performance
decrease, so KLLD ran in 22 ms, Cramer ran in 21 ms, and
Bhattacharyya ran in 20 ms on the CKKS cryptosystem.
Raspberry Pi Performance. Raspberry Pi performance, as
expected, was the worst overall. The Raspberry Pi only has
results for SEAL 2.3.

D. Classification Performance

We performed a grid search and evaluated a neural network
with 10-fold cross validation. The resulting model used a L-
BFGS solver with 4 hidden layers of 15 neurons each and
a logistic activation function. We optimized the model for
precision rather than F1 score. Optimizing for precision was
our main goal as the cost of a false positive is that a video
that should not be shared will be shared, thus violating privacy,
whereas the cost for a false negative is only that no sharing
will take place (which we considered much less costly). As
shown in table V, our model produces a result with a slightly
better F1 score than the previous work on the same dataset, but
with significantly higher precision. Note that [4] separates their
videos into indoor and outdoor, so the values presented here
are the weighted average of indoor (68%) and outdoor (32%)
videos that were in the dataset. After manually comparing the
videos that produced false positives, we identified that 75%
of these videos were skype videos of the same location as the
comparison video where there was no movement in the scene
in either, but at a different time. We reran the test without these
videos as it is unlikely that a user would want to exchange a
video of nothing happening and this improved our F1 score to
97.73. This produced a very similar result to our experiments
that we ran using comparisons of video only when a user was
holding a mobile phone by hand which produced and F1 score
of 97.97.

TABLE V: Direct Comparison of SSO-based Systems

System F1 Prec | Recall Acc Error
PoP-Share | 96.63 | 97.73 | 9556 | 95.16 4.84
SSO[4] 96.13 | 92.56 | 100.00 | 96.30 3.70
Handheld | 97.97 | 99.32 | 96.67 | 98.00 | 2.00

V. DISCUSSION
A. Performance

The results in section IV are run on a single core each,
so the time for the system to run is bound by the slowest
algorithm. All of the distance measures that we use can be run
simultaneously and each distance measure is also computed
with no dependency between the individual data computations.
As a result, if performance needs mandated that the system
run faster, we could utilize multiple cores to provide near-
linear performance improvements as a function of the number
of cores available (assuming usual caveats regarding other
activity on the system).

B. Security

The security equivalency of homomorphic encryption is a
function of the dimension of the ring and the size of the
ciphertext modulus. The larger the dimension of the ring, the
larger the ciphertext modulus must be to provide equivalent
levels of security and as a result, performance suffers. For
reference, see table VI for the balance between ring dimension
(n), bits of security, and ciphertext modulus.

TABLE VI: Security Parameter Table

n Bits of Security | CT Modulus Bits
4096 128 111
256 60
8192 128 220
256 120

Replay Attacks: Since the system generates a new keypair
for each transactions, replaying an encrypted byte array would
result in the decision-making client decrypting junk values.
The client can check the nonce to see if it is correct and if
it has been altered due to incorrect decryption, it can ignore
transaction.

C. Limitations and Future Work

PoP-Share has not been fully analyzed for security. It may
be possible for an attacker to strategically craft a video that
causes false positives. As future work, we will perform a
security analysis to determine if an attacker can do better than
a brute force attack. We are also implementing a context-aware
system that will leverage additional context information if it
is available based on our preliminary experiments on Context-
Aware Proof of Presence (CAPP)[7].

VI. RELATED WORK

Fan[8] describes a privacy preserving system specifically for
video sharing. They focus on content privacy at the video clip
level and prevent statistical inferences from video collections.
Their work uses computer vision techniques to identify objects
and actions of interest in the video and can replace them
with virtual objects that protect the identity of privacy-leaking
content while still capturing the intended content of the video.
Upmanyu [9] enables privacy-preserving video surveillance.
They obscure video content in surveillance systems that is
irrelevant to the person viewing. Thuraisingham [10] focuses
on access control in video databases. They provide privacy
preserving video techniques deriving from the work of [8]
and limit access based on a credential hierarchy. Yang [11]
focuses on access control in a cloud-based video distribution
system. The goal of their work compared to previous work
is to be able to share videos with a group of people during
a particular time period. Their system is built on top of the
CP-ABE scheme[12] and utilize it to ensure that users cannot
decrypt video outside of a particular time.

To the best of our knowledge, no existing work meets the
requirements of our video sharing system. The focus of some
previous work has been on obscuring the video itself whereas
we want all videos that are shared to be in original condition.
Also, these systems are designed to release information to the
user, albeit in an obfuscated form, even if they were not present
at the event. Other systems are designed to limit the sharing of
video to known groups or users whereas we need videos to be
distributed without having to have a pre-existing relationship
with the other users. In many cases, a cloud server performs
the processing on plaintext data and breaks our requirement

that an honest, but curious, server should also not learn the
content of the video.

VII. CONCLUSIONS

We have presented our system, PoP-Share, that enables
privacy-enhancing video sharing for people who were co-
present at an event. We have built an efficient video scene
comparison system on the CKKS fully homomorphic cryp-
tosystem to ensure that the videos can be processed for
similarity without revealing information about the video itself.
We have demonstrated the feasibility of using FHE on a mobile
phone by implementing and testing this system both entirely
on a mobile phone via a P2P architecture and leveraging
cloud resources to offload computation via a client-server
architecture. The decision can be made in as little as 400 ms
on a mobile device and 20 ms on a cloud server. We have
demonstrated the classification performance of our modified
SSO algorithm by achieving and F1 score of 0.966 and a
precision of 0.977, both of which exceed previously published
results. Additionally, we achieved and F1 score of 0.9797
and a precision of 0.9932 on a newly recorded dataset. As
a result, we conclude that not only is privacy-enhanced video
sharing within arbitrary groups of users that were co-present
at an event now possible, it is possible to perform directly on
modern mobile phones without requiring excessive wait times.

REFERENCES

[1] James Loke Hale, “More Than 500 Hours Of Content Are Now Being
Uploaded To YouTube Every Minute,” May 2019.

[2] C. Dobbins and S. Fairclough, “A mobile lifelogging platform to
measure anxiety and anger during real-life driving,” in EmotionAware),
Mar. 2017, pp. 327-332.

[3] P. Aditya, R. Sen, P. Druschel, S. Joon Oh, R. Benenson, M. Fritz,
B. Schiele, B. Bhattacharjee, and T. T. Wu, “I-Pic: A Platform for
Privacy-Compliant Image Capture,” ser. MobiSys 16, 2016, pp. 235-
248.

[4] K. Wu and B. Lagesse, “Do You See What I See? Detecting Hidden

Streaming Cameras Through Similarity of Simultaneous Observation,”

IEEE Pervasive Computing and Communications, p. 10, 2019.

Microsoft SEAL (release 3.3), Jun. 2019. [Online]. Available:

https://github.com/Microsoft/SEAL

[6] “Simple encrypted arithmetic library,” Jul. 2019, original-date: 2017-10-
19T18:53:48Z. [Online]. Available: https://github.com/Lab41/PySEAL

[71 N. Handaja and B. Lagesse, “CAPP: A Context-Aware Proof of Presence
for Crowdsensing Incentives,” orkshop on Context and Activity Modeling
and Recognition, p. 6, 2020.

[8] J. Fan, H. Luo, M.-S. Hacid, and E. Bertino, “A Novel Approach for
Privacy-preserving Video Sharing,” ser. CIKM ’05. New York, NY,
USA: ACM, 2005.

[9] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. V. Jawahar,

“Efficient privacy preserving video surveillance,” in 2009 IEEE 12th

International Conference on Computer Vision, Sep. 2009.

B. Thuraisingham, G. Lavee, E. Bertino, J. Fan, and L. Khan, “Access

control, confidentiality and privacy for video surveillance databases,”

2006.

K. Yang, Z. Liu, X. Jia, and X. S. Shen, “Time-Domain Attribute-

Based Access Control for Cloud-Based Video Content Sharing: A

Cryptographic Approach,” IEEE Transactions on Multimedia, vol. 18,

no. 5, pp. 940-950, May 2016.

A. Lewko and B. Waters, “Decentralizing Attribute-Based Encryption,”

in Advances in Cryptology — EUROCRYPT 2011, 2011.

[5

=

[10]

[11]

[12]

